需要金币:1000 个金币 | 资料包括:完整论文 | ||
转换比率:金额 X 10=金币数量, 例100元=1000金币 | 论文字数:3697 | ||
折扣与优惠:团购最低可5折优惠 - 了解详情 | 论文格式:Word格式(*.doc) |
下一篇:中学几何教学体系分析.doc
摘要: 中国剩余定理是中国古代数学家为世界数学的发展所作出的巨大贡献,它的数学思想在近代数学、当代密码学以及日常生活中都有着广泛的应用和影响.本文研究了对中国剩余定理的推广并用算法进行编程实现. 关键词 中国剩余定理;推广;算法;编程实现
在古代中国的数学历史上,流传着一个韩信点兵的故事:秦朝末年,楚汉相争.有一次,韩信率领1500名将士和楚国大将李峰交战.经过一场苦战,楚军不敌汉军,节节败退返回营地,而汉军也死伤大约四五百人.于是,韩信也整顿兵马返回大本营.当行至一山坡时,忽然有后军来报,说楚军骑兵追来.汉军本来就已十分疲惫,这时队伍一片哗然.韩信兵马行至坡顶,见敌方人数不足五百骑,便立刻点兵迎敌.他命令士兵3人站成一排,多出2名;接着命令士兵5人站成一排,多出3名;他又命令士兵7人站成一排,又多出2名.韩信马上向将士们宣布:我军有1073名战士,而来敌不足五百,况且我们居高临下,以众击寡,一定可以打败敌人.汉军本来就十分信服自己的统帅,这样一来更是认为韩信是神仙下凡、神机妙算.于是士气大振.交战不久,楚军大败而逃.[1] 看完这个故事我相信大家都会有一个疑问,那就是韩信为什么能仅凭士兵的三次排列就能知道士兵人数呢?其实韩信点兵的求解方法,就是中国剩余定理的一次同余式解法.它是中国古代数学的一项重大创造,并且在世界数学史上具有十分重要的地位.因此下面我就对中国剩余定理进行一些介绍和简单的推广,并进行编程实现.
目录 摘要 Abstract 二、中国剩余定理 1 定理内容 2 举例及编程实现 三、中国剩余定理的推广 1 提出问题 2 理论分析 3 解法归纳 4 举例及编程实现 四、总结 参考文献 |