P2P违约风险预测模型的比较分析.docx

资料分类:管理学院 上传会员:白色泡沫 更新时间:2019-01-16
需要金币1000 个金币 资料包括:完整论文 下载论文
转换比率:金额 X 10=金币数量, 例100元=1000金币 论文字数:10841
折扣与优惠:团购最低可5折优惠 - 了解详情 论文格式:Word格式(*.doc)

摘要:P2P是英文person-to-person(或peer-to-peer)的缩写,翻译成中文则是个人对个人(伙伴对伙伴)。又称作点对点网络借款,是一种民间小额借贷模式的互联网金融(ITFIN)产品。得益于近年来互联网技术的快速发展,在硬件上面得到了足够的支持。在另一方面,面对全球金融危机,银行对个人信用贷款的紧缩为P2P的发展开辟了一条道路。在国内,由于金融服务在地域上的覆盖不全面,弱势群体缺乏足够抵押和担保,难以从正规金融机构贷款。这两个因素促成了P2P网络贷款在国内迅速发展起来。

-然而在发展当中,许许多多的问题开始浮现,大量的P2P网络借贷平台因为欺诈、破产、不正当经营等因素导致严重后果。欧美国家由于个人信用制度建立完全,网络借贷发展已趋于成熟,所以此类问题可以有效得到抑制。而国内在个人信用体系方面并没有可以依赖的历史经验和数据,在个人信用体系建立不完全的限制下,P2P网络借贷在国内的发展受到了牵制。

-因此在面对个人信用体系建立不完全的问题上,对借款人是否违约的预测显得尤为重要。一个P2P网络借贷平台,在国内的环境下,只有保障了投资者利益,减少借款者的违约,才能够保证P2P平台自身盈利,才能够长此以往的发展下去。而在针对P2P网贷违约风险这一方面,已经有不少的研究做出了预测模型。本文在此基础上选取logistic回归模型,SVM支持向量机模型和LDA线性判别分析模型,对比以上三种方法在P2P违约风险预测上何种模型能更好地构建预测模型。

关键词:P2P网络借贷; Logistic模型; SVM模型  ;LDA模型

 

目录

摘要

Abstract

一、研究背景及意义-4

二、文献综述-6

三、模型介绍-7

(一)Logistic回归模型-7

(二)SVM支持向量机模型-8

(三)LDA线性判别分析-9

(四)LASSO方法选择变量-10

四、实证研究-11

(一)数据准备-11

(二)模型实证-13

(三)模型评估-17

五、结论-19

(一)模型主要结论-19

(二)本文不足-19

参考文献-20

附录-21

相关论文资料:
最新评论
上传会员 白色泡沫 对本文的描述:然而发展的过程不可能一帆风顺,P2P网络借贷许许多多的问题开始浮现出来。由于国内个人信用体系的缺失,借贷交易时往往会发生信息不对等的情况,这一状况一度导致了许多平台发......
发表评论 (我们特别支持正能量传递,您的参与就是我们最好的动力)
注册会员后发表精彩评论奖励积分,积分可以换金币,用于下载需要金币的原创资料。
您的昵称: 验证码: