需要金币:1000 个金币 | 资料包括:完整论文 | ||
转换比率:金额 X 10=金币数量, 例100元=1000金币 | 论文字数:8550 | ||
折扣与优惠:团购最低可5折优惠 - 了解详情 | 论文格式:Word格式(*.doc) |
摘要:所谓copula,就是一种连接函数。copula提供了多元向量之间的相依结构,是一种常用的统计数据建模方法。目前,对二元copula的研究已日趋成熟,随着科学研究深入,越来越需要对多个随机变量的相依关系给出准确描述。但是多元copula由于其构造的复杂性,所以研究工作仍在急需深入发展阶段。本文研究了具有共同对角面函数的一类多元 copula 和拟 copula 的构造。将文献[1]中对角面的概念加以推广,然后定义了一种“ ⊕ ”运算,基于这种运算建立了构造多元 copula 和拟 copula 的方法。给出了一类具有共同对角面函数的多元 copula 和拟 copula ,以及这些 copula 的性质。为相关统计建模和金融分析提供了描述某种相依结构的框架。
关键词:连接函数;copula ;拟 copula ; Lipschitz 条件;密度函数
目录 摘要 Abstract 1 引言-1 1.1 研究背景-1 1.2 预备知识-2 1.2.1二元copula函数-2 1.2.2 多元copula函数-3 1.3 工作阐述-4 1.3.1 本文目的-4 1.3.2 方法-4 1.3.3 意义-4 1.4 国内外研究现状-5 2 copula的构造-7 2.1定义及推广-7 2.2 copula和拟copula的构造-9 3 C1⊕C2的绝对连续性-13 4 结论-16 4.1研究内容-16 4.2 优缺点-17 4.2.1 优点-17 4.2.2 缺点-17 4.3 展望-17 致 谢-20 |