需要金币:500 个金币 | 资料包括:完整论文 | ||
转换比率:金额 X 10=金币数量, 例100元=1000金币 | 论文字数:4404 | ||
折扣与优惠:团购最低可5折优惠 - 了解详情 | 论文格式:Word格式(*.doc) |
摘要:本文章主要研究n阶非齐次线性微分方程的解法.如常数变易法、比较系数法、简化待定系数法、算子法和叠加法等方法.通过对这些解法的研究,我们能清晰的理解各种解法适用的具体情况.这些非齐次微分方程的基本解法,使我们能够更好的学习和理解微分方程. 关键词:微分方程; 非齐次; 求解方法
Abstract:This paper concludes that the first and second order and n order inhomogeneous differential equation solution.As usual constant variation, comparative coefficient method, simplify the method of undetermined coefficients, operator method and superposition method, etc. Through the method of the research, we can clear understanding of the various solutions of the specific conditions of the applicable. By these inhomogeneous differential equation of the basic method, so that we can better learning and understanding differential equation. Key words: Differential equations; Inhomogeneous; Methods for solving
目录 一 定义与定理 二 几种常规解法 2.1 常数变易法 2.2 比较系数法 2.3 简单待定系数法 2.4 微分算子法 2.5 叠加法 三 几种常规解法的比较 四 几种非常规解法 4.1积分法 4.2升阶法 4.3降阶法 4.4化为方程组法 参考文献 致谢 |