需要金币:500 个金币 | 资料包括:完整论文 | ||
转换比率:金额 X 10=金币数量, 例100元=1000金币 | 论文字数:4562 | ||
折扣与优惠:团购最低可5折优惠 - 了解详情 | 论文格式:Word格式(*.doc) |
摘要:置换群是近世代数这门课程里的很重要的一个知识点。利用置换群的相关性质,我们可以解决一些抽象的问题。本文主要总结归纳了置换群的性质,同时讨论置换群在求解正多边形的对称变换群、正多面体的对称变换群,多项式的对称变换群中的应用。 关键词:群; 置换; 置换群; 对称变换群
Abstract: Permutation group is a crucial knowledge in the course of modern algebra. Using of the relevant properties of permutation group, we can solve some abstract problems. This paper will describe the properties of permutation groups , and discuss its application on solving regular polygon symmetric transformation groups, regular polyhedron symmetric transformation groups, polynomial symmetric transformation groups. Key words:group; permutation; permutation group; symmetric transformation group
置换群是群论中很重要的一类群,群论最早就是从研究置换群开始的,它还是一类重要的非交换群,每个有限的抽象群都与一个置换群同构,且现实生活中的许多对称现象总是以某种方式与置换及置换群有着密切的联系!所以研究置换群的性质及应用就显得格外的重要了!因此,我对置换群的一些性质进和置换群在对称变换群中的应用进行一个总结归纳! |