需要金币:500 个金币 | 资料包括:完整论文 | ||
转换比率:金额 X 10=金币数量, 例100元=1000金币 | 论文字数:10291 | ||
折扣与优惠:团购最低可5折优惠 - 了解详情 | 论文格式:Word格式(*.doc) |
【摘要】“数形结合”是贯穿于数学发展历史长河中的一条主线,它包括“以数辅形”和“以形助数”两个方面.这种数与形的信息转换,相互渗透,不仅可以使一些题目的解决简捷明快,同时还可以大大开拓我们的解题思路,为研究和探讨数学问题开辟了一条重要的途径.“数形结合”不应仅仅作为一种解题方法,更应作为一种数学思想,它是将知识转化为能力的“桥”.本文将对数形结合思想进行简单的阐述,重点就其在数学解题中的应用做深入的探讨. 【关键词】数形结合思想;中学数学;应用
【Abstract】Number and Shape "is a main theme throughout the long history of the development of mathematics. It includes ''a number of auxiliary-shaped" and "shape to help the number" two.The number and shape of the conversion, the mutual penetration, not only can make a simple and neat solution of some of the topics, but also can greatly expand our problem-solving ideas, has opened an important way to study and explore mathematical problems. Number and Shape, "not merely as a problem-solving approach, but should serve as a Number and Shape of mathematical thinking, it is the knowledge into the ability to" bridge ". This article will be the Number and Shape ideological exposition simple, with emphasis on their application in mathematical problem solving in-depth discussion. 【Key words】Number and Shape Thought; secondary school mathematics; application |