ARIMA融合神经网络的CPI预测.rar

资料分类:理工论文 上传会员:艾米 更新时间:2014-09-15
需要金币500 个金币 资料包括:完整论文 下载论文
转换比率:金额 X 10=金币数量, 例100元=1000金币 论文字数:10995
折扣与优惠:团购最低可5折优惠 - 了解详情 论文格式:Word格式(*.doc)

摘要:居民消费价格指数(CPI)是反映国民经济和百姓生活的重要指标,是国内外学者研究的热点.目前,CPI预测主要采用基于传统研究方法或人工神经网络的单一预测方法.近年来的研究表明,组合预测方法比单一预测方法具有更高的预测精度.本文在深入分析了CPI的基础上,建立了单整自回归移动平均(ARIMA)融合神经网络(NN)的CPI时间系列预测模型.通过对我国CPI月度数据的仿真实验,将融合模型与单一模型进行比较,预测结果证实,ARIMA与BP神经网络的组合预测明显优于单一方法的预测. 

关键词:单整自回归移动平均;神经网络;融合模型;CPI预测

 

目录

摘要

ABSTRACT  

第一章 引言-1

第二章 ARIMA和NN模型-4

2.1 ARIMA模型-4

2.1.1 ARIMA模型概念-4

2.1.2 ARIMA模型构建及预测步骤-5

2.2 NN模型-6

2.2.1 NN模型的基本概念-6

2.2.2 BPNN模型及其算法-8

2.2.3 BPNN模型结构-9

2.3 ARIMA和NN的融合模型-10

第三章 融合模型在CPI预测中的应用-12

3.1 样本数据分析-12

3.2 ARIMA融合BPNN的CPI预测模型构建-13

第四章 结论-19

参考文献-20

致 谢-23

相关论文资料:
最新评论
上传会员 艾米 对本文的描述:我国CPI主要监控八大类商品和服务,分别包括食品、烟酒及用品、衣着、家庭设备用品及服务、医疗保健及个人用品、交通和通信、娱乐教育文化用品及服务、居住.近几年以来,价格上......
发表评论 (我们特别支持正能量传递,您的参与就是我们最好的动力)
注册会员后发表精彩评论奖励积分,积分可以换金币,用于下载需要金币的原创资料。
您的昵称: 验证码: