需要金币:1000 个金币 | 资料包括:完整论文 | ||
转换比率:金额 X 10=金币数量, 例100元=1000金币 | 论文字数:5180 | ||
折扣与优惠:团购最低可5折优惠 - 了解详情 | 论文格式:Word格式(*.doc) |
摘要:在本文中,我们通过阶的估计理论,用例题方式去讨论函数极限、广义积分及级数的敛散问题,使复杂的问题简单化,总结阶的估计常用方法。本文给出的方法和思路,实际上是一些基本的判断问题师常用模型,是在学习过程和平时练习过程中所总结的经验,一方面是教材中的部分内容的总结,另一方面从多角度的思考。 关键词:阶的估计 函数极限 广义积分敛散性 级数敛散性
在进一步学习数学分析时,为了方便研究无穷小量和无穷大量,引入了E.landau符号:o、O、~。【1】通过这些符号对给定的变化过程中对变量的变化状态进行比较,可以使问题的讨论变得更加简单。显而易见,数学分析中的基本概念就包括阶的概念,阶估计方法也是在研究问题简化问题中的一个十分常用和重要的手段。它应用的邻域十分广泛,如:判断级数的敛散性,判定广义积分的收敛性,计算某些极限以及利用这些方法对实际问题进行应用。而且,还能用于讨论某些重要的渐进展开式的应用。
目录 摘要 Abstract 一、引言 4 二、阶的估计在级数收敛问题中的应用5 三、阶的估计在判定广义积分的收敛的应用 9 四、阶的估计在计算极限中的应用 11 四、参考文献15 五、致谢15 |